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Abstract Explaining the evolution of a predominantly homochiral environment on
the early Earth remains an outstanding challenge in chemistry. We explore here the
mathematical features of a simple chemical model system that simulates chiral sym-
metry breaking and amplification towards homochirality. The model simulates the
reaction of a prochiral molecule to yield enantiomers via interaction with an achiral
surface. Kinetically, the reactions and rate constants are chosen so as to treat the two
enantiomeric forms symmetrically. The system, however, incorporates a mechanism
whereby a random event might trigger chiral symmetry breaking and the formation of
a dominant enantiomer; the non-linear dynamics of the chemical system are such that
small perturbations may be amplified to near homochirality. Mathematical analysis of
the behavior of the chemical system is verified by both deterministic and stochastic
numerical simulations. Kinetic description of the model system will facilitate explo-
ration of experimental validation. Our model system also supports the notion that one
dominant enantiomeric structure might be a template for other critical molecules.
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1 Introduction

The emergence and amplification of chirality remain as an outstanding problem in
understanding prebiotic chemistry [1–3]. The fact that, on Earth, living systems are
composed predominantly of L-amino acids and D-sugars is in stark contrast with the
observation that simple chemical synthesis of these molecules from achiral precursors
results in racemic mixtures of enantiomers, giving both R- and S- configurations in
equal proportions. Indeed, in a biological environment, the chirality of monomers is
critical to the effective functioning of macromolecules. Amino acids and sugars, the
respective precursors for proteins and nucleic acids, must exhibit one chiral form;
otherwise, the folding and shape of biological polymers like proteins, RNA, and DNA
would not result in proper function. It is thus reasonable to assume that the chemical
evolution of homochirality of critical biological molecules is an essential, early event
for the advancement of life throughout the universe [1–4].

There are many theories of how a predominately chiral environment may have
evolved that have been inspired by experimental observations and hypothetical sys-
tems. In his 1953 seminal paper, Frank [5] proposed a model in which each of the
two enantiomers of an asymmetric molecule is catalytic for its own synthesis and
is inhibitory for the production of the other enantiomer; as a result the autocatalytic
reaction amplifies any initial enantiomer imbalance. Frank’s model includes several
important features that lead to chiral symmetry breaking, including the open and non-
equilibrium nature of the system, the cross-inhibition, and the autocatalytic production
of the chiral species [5–7]. Investigation of the dynamic aspects of such chemical model
systems is important in understanding chiral symmetry breaking [8–13]. In other cases,
authors sought to produce simpler models that operate under fewer assumptions. For
example, the “toy” model proposed by Saito and Hyuga [14] describe closed rather
than open systems and included no cross-inhibition, while demonstrating varying
strengths of autocatalysis and recycling. Other important model systems have incor-
porated polymerization and/or epimerization steps in the chemical mechanism [15,16].
These models focus on the formation of hetero- and homo-dimers. Chemical model
systems such as these are important in prompting experimental validation of chiral
symmetry breaking.

Many interesting experimental systems have been devised to understand the chem-
ical and physical basis of homochirality. Among the most important is that of Soai
et al. where, in these systems, a small initial excess of one enantiomer, itself a cata-
lyst for the reaction, produced an enantiomeric excess of greater than 85 % of chiral
pyrimidyl alkanol [6,7,17–20]. Progress has been made in understanding the use of
chiral surfaces to produce a homochiral product [21,22]. In another experimental sys-
tem, Kondepudi et al. demonstrated symmetry breaking during crystallization; they
showed that stirring during crystallization leads to both symmetry breaking and, above
a certain threshold and at large enough stirring rates, the achievement of total chiral
purity, i.e. homochirality [6,23]. Likewise, grinding of racemic mixtures of R and
S crystals to produce a homochiral crystal state from supersaturated solutions was
observed by Viedma with sodium chlorate and by Noorduin et al. with amino acids
[24,25]. A mathematical description of chiral symmetry breaking was proposed by
Wattis [26]. Similarly, deracemization was observed to be induced by a temperature
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gradient in a boiling slurry of NaClO3 [24]. Perry et al. employed sublimation show-
ing that a near racemic mixture of serine yielded a sublimate with a highly enriched
enantiomer [27].

Of particular interest in understanding the chemical evolution of homochirality is
the idea that once one molecule, such as a simple amino acid, exists predominantly in
one chiral form, it could then serve as a template for the transmission of homochirality
to other molecular structures [28–30]. Nanita and Cooks suggest that homochirogene-
sis leading to biochirality has three steps: chiral symmetry breaking, chiral enrichment,
and chiral transmission. Their experiments demonstrate transmission of homochiral-
ity from a homochiral serine octamer to cysteine or other amino acids [28]. Hein et
al. described how a low concentration of a chiral amino acid biased the reaction pro-
ducing amino-oxaoline precursors for RNA nucleotides [31,32]. Breslow and Cheng
[33] demonstrated experimentally that L-amino acids can catalyze the formation of
D-glyceraldehyde, a simple three-carbon sugar. These results suggest that generation
of a single homochiral structure might be sufficient to initiate a process for homochi-
rogenesis on the early Earth.

As noted by Pross and Pascal [34], we can only speculate on the actual path to life on
Earth and elsewhere but, as an important scientific obligation, we can investigate “the
principles that would explain the remarkable transformation of inanimate matter to
simple life”. In the present paper, we propose a simple chemical model system that does
not exhibit features common to reported models. Mathematical analysis of the “toy”
model reveals how a “random” perturbation can trigger chiral symmetry breaking
and the amplification of one enantiomeric form. One dominant enantiomeric form
could act as a possible template for other critical molecules. We describe important
kinetic features of our model to facilitate exploration of experimental validation of
our chemical system.

2 Methods

2.1 Description of the model

We explored a chemical model system that exhibits spontaneous chiral symmetry
breaking from an achiral substrate, X, to generate an enantiomeric excess of R or
S forms by interaction with an achiral surface. The mechanistic steps of the model
were devised so that the kinetic parameters treated both enantiomers equivalently. This
simple model system is, undoubtedly, a particular case which might have operated in
a prebiotic environment.

In the model, X represents a prochiral precursor leading to R or S after binding to
C, an achiral surface to which X, R or S can bind. The XC intermediate leads to RC and
SC, which can either interact with R and/or S, or which can release the chiral products
R and S. The critical elementary steps of the mechanism can be described as three sets:
in step #1, X binds to C; in steps #2 and #3, X on the achiral surface generates R or S
bound to C; in steps #4, #6 and #8, R bound to C is either released or regenerates X
after interacting with either R or S. Parallel steps #5, #7 and #9, describe the reactions
of S bound to C. Figure 1 depicts these mechanistic steps.
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Reaction Step Rate Constant

X + C → XC k0 (1)

XC → RC k1 (2)

XC → SC k1 (3)

RC + R → RC + X k2 (4)

SC + S → SC + X k2 (5)

RC + S → SC + X k3 (6)

SC + R → RC + X k3 (7)

RC → R + C k4 (8)

SC → S + C k4 (9)

2.2 Computational methods

The model system was explored computationally to search for conditions and regions in
kinetic parameter space that resulted in chiral symmetry breaking. Two computational
approaches were used: Kintecus 4.50 [35,36] and Chemical Kinetics Simulator, CKS
1.0, [37]. Kintecus is an Arrhenius-based, chemical simulation program developed
by J. C. Ianni that interfaces with Microsoft Excel. It is a deterministic program
that solves the governing differential equations of the system. Inputs to Kintecus
include the reaction scheme, kinetic parameters (A and Ea), initial concentrations
and temperature. Program parameters include selection of the numerical integrator;
DASPK, a differential algebraic systems equations solver, was used for all runs. Other
program parameters and switches are noted in figure legends. Output includes graphic
and numeric information about concentrations of different species over time.

Alternatively, CKS is a program developed by IBM, which uses a stochastic
approach to calculate the concentrations of reactants and products over time [37].
This program simulates the collisions between molecules and finds solutions by ran-
domly (i.e. unpredictably) selecting among probability-weighted reaction steps. Like
Kintecus, input for CKS includes the reaction scheme, kinetic parameters, initial con-
ditions and temperature. CKS-specific parameters include total number of molecules
and a random number seed.

We introduced certain assumptions and initial conditions to simplify the model and
to focus on symmetry breaking. The reaction scheme was devised to be symmetrical
in processing enantiomers R and S, i.e. reactions #2 and #3 have the same rate constant
k1, etc. To facilitate kinetic and numerical analysis, we assume the mechanistic steps
are irreversible.

2.3 Mathematical methods

The governing differential equations that define the system dynamics (see Eq. 1) are
non-linear and thus resistant to exact solution. However, they do admit to a stability
analysis of the quasi-equilibrium state [38]. In the case where this state is unstable, we
are also able to predict the long term (steady state) concentrations of the enantiomers
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Fig. 1 Mechanistic steps describing the chemical model system—reaction #1–#9

R and S—and the corresponding enantiomeric excess—that result from amplification
of the perturbation that triggers the symmetry breaking.

3 Results and discussion

3.1 Computational studies

Kinetic parameters were varied to explore scenarios in which symmetry breaking
occurred. In the following examples, we used the representative parameters shown
in Table 1. We describe here two initial states: Initial State 1: R = S = 0.0M, X = 1M,
C = 1M (held constant) and all intermediates are 0.0M; Initial State 2: R = S = 0.5M,
X = 1×10−6M (Note, X = 0.0M results in no reaction), C = 1.0M (held constant) and
all intermediates are 0.0M.
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Table 1 Kinetic parameters
Rate
constants

Arrhenius
constant (A)

Energy of
activation (Ea)

ko 1.00 × 103 30

k1 1.00 × 103 30

k2 1.00 × 103 15

k3 1.00 × 103 10

k4 1.00 × 103 14

3.1.1 Initial state 1: X = 1M, R = S = 0M, C = 1M (held constant)

The results from both Kintecus and CKS, for a temperature of T = 300 K, are illustrated
in Figs. 2 and 3. The concentrations of R and S rapidly increase to a quasi-equilibrium
state, which, after some time (depending on the size of the numerical “trigger” that
breaks the symmetry between R and S), bifurcates to produce a final steady state that
represents a mixture with one of the two enantiomers substantially in excess. At this
temperature, we obtain an enantiomeric excess, ee = |(R − S)|/(R + S), of 88.1 %.

Fig. 2 Output from deterministic analysis of model at 300 K. Initial state 1: X = 1M, R = S = 0M, C = 1M
(held constant). Input reactions #1–#9; kinetic parameters: Table 1; kintecus switches: -ig:mass; starting
integration time and maximum integration time, 1 × 10−2 s; accuracy, 1 × 10−13
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Fig. 3 Output from stochastic analysis of model at 300 K. Initial state 1: X = 1M, R = S = 0M, C = 1M (held
constant). Input: Reactions #1–#9; CKS Parameter: 100,000 total molecules

CKS used the same kinetic parameters and initial conditions as Kintecus and used
CKS-specific parameters of 100,000 molecules and a random number seed. The enan-
tiomer that was generated in excess varied with input of the random seed, an input
feature of the stochastic program. The output from CKS was qualitatively similar to
that from Kintecus; both programs showed a quasi-equilibrium state before bifurcation
of the concentration curves leading to a steady state with an excess of one enantiomer.
Typically, CKS predicted a shorter period in the quasi-equilibrium state.

The differences between the results from CKS and Kintecus were attributed to
different methods of numerical analysis but, in both cases, a very small perturbation
in the concentration of R or S in the quasi-equilibrium state led to symmetry breaking.
In the CKS program, the stochastic nature of the process led to very early symmetry
breaking. In Kintecus, the trigger for the chiral symmetry breaking was small round-off
errors in the integration algorithm. In these cases, the symmetry breaking leading to
an enantiomeric excess randomly favored either chiral form. The large-scale behavior
of the system was predictable if a bias was introduced initially; for example, an initial
concentration of R = 1 × 10−18 M with S = 0.0 M, predictably lead to an ee of the R
isomer (not shown). It is reasonable to propose that these computational perturbations
mimic imbalances that could occur in nature.

To investigate the effect of different temperature conditions on the outcomes from
Initial State 1, the Kintecus program was run for temperatures in the range from 250
to 500 K; the results are shown in Fig. 4 and Table 2. As noted in Fig. 4 and Table 2,
chiral symmetry breaking does not occur above 417 K and, below 417 K, both the
enantiomeric excess and the concentration of the dominant enantiomer increase with
decreasing temperature, reaching 90 % below T = 294 K. Note that the enantiomer
which dominates in the steady state appears to be random.
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Fig. 4 Output from deterministic analysis of model for enantiomers R (−−−�−−−) and S (−−− • −−−) at
different temperatures. Initial state 1: X = 1M, R = S = 0M, C = 1M (held constant). Input: Reactions #1–#9;
Kinetic parameters: Table 1. Kintecus switches: -ig:mass; starting integration time and maximum integration
time, 1 × 10−2 s; accuracy, 1 × 10−13

Identical final results were obtained if the initial concentration of C was 1.0M and
was not held constant. Graphs showed that 1.0M C was in considerable excess (not
shown).

3.1.2 Initial state 2: X = 1 × 10−6 M, R = S = 0.5M, C = 1.0M (constant)

Starting with a racemic mixture of R and S, no reaction occurred if the initial con-
centration of X was 0.0M, since none of the intermediates, XC, RC or SC could form.
With a small initial concentration of X, both Kintecus and CKS predict symmetry
breaking from the initial racemic mixture. As shown in Fig. 5 for 300 K, concentra-
tions of R and S dropped to a quasi-equilibrium state and then, as for the previous
case, the concentration plots bifurcate. Curiously, the numerical investigations reveal
that the quasi-equilibrium and steady state response of the system are independent of
the initial concentrations of all the species, and are wholly determined by the sum of
those concentrations, viz: R + S + X + XC + RC + SC.
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Table 2 Effect of temperature on chiral symmetry breaking

Temperature
(K)

k4/(k2 + k3) k2/k3 Conc.
(R = S)
at quasi-equil.

Final
conc. R

Final
conc S

SUM
[R] + [S]

Enantiomeric
excess (%)

250 0.1339 0.0902 0.1339 0.7190 0.0163 0.7353 95.6

275 0.1563 0.1122 0.1563 0.0257 0.6620 0.6877 92.5

300 0.1773 0.1347 0.1773 0.6080 0.0385 0.6465 88.1

325 0.1970 0.1571 0.1970 0.0554 0.5550 0.6104 81.9

350 0.2150 0.1794 0.2150 0.0779 0.5010 0.5789 73.1

375 0.2310 0.2012 0.2310 0.1090 0.4420 0.5510 60.4

400 0.2460 0.2225 0.2460 0.3670 0.1580 0.5250 39.7

415 0.2540 0.2347 0.2540 0.2890 0.2230 0.5120 12.9

417 0.2551 0.2365 – 0.2551 0.2551 0.5102 0.0

425 0.2594 0.2430 – 0.2594 0.2594 0.5188 0.0

450 0.2719 0.2628 – 0.2719 0.2719 0.5438 0.0

500 0.2938 0.3003 – 0.2938 0.2938 0.5876 0.0

Rate constants at different temperatures are calculated from the Arrhenius equation, k = A e−Ea/RT in
which R is the universal gas constant, 8.314 × 10−3 kJ/(K· mol)
Concentrations were outcomes from the Kintecus. Enantiomeric excess was determined using the final
concentrations: |[R] − [S]|/[R] + [S]. The bold values of [R] or [S] indicates the enantiomer formed in
excess

3.2 Mathematical analysis of the model

The governing differential equations that define the system dynamics are non-linear
and thus resistant to exact solution. However, they do admit to a stability analysis of
the quasi-equilibrium state [26]. In the case where this state is unstable, we are also
able to predict the long term (steady state) concentrations of the enantiomers R and
S—and the corresponding enantiomeric excess—that results from amplification of the
perturbation that triggers the symmetry breaking.

For the kinetic parameters in Table 1, the simulations show that above some tem-
perature (417 K for the present system parameters, Fig. 1) the quasi-equilibrium state
is stable, i.e. no chiral symmetry breaking, but that at lower temperatures, symmetry
breaking occurs with amplification leading to a large excess of one enantiomer.

To theoretically investigate the stability of the system, we define a vector in state
space, Z = (Z1, Z2, Z3. . ., Z6) = (X,XC, R, S, RC, SC), where the symbols represent
the respective molar concentrations. The governing equations of the chemical system
become dZi/dt = fi(Z), i = 1, 2, . . ., 6, where the functions fi are, respectively:

f1 = −k1XC + k2 (RRC + SSC) + k3 (RSC + SRC)

f2 = −2k1XC + k1XC
f3 = −k2RRC − k3RSC + k4RC

f4 = −k2SSC − k3SRC + k4SC

f5 = k1XC + k3 (RSC − SRC) − k4RC

f6 = k1XC + k3 (SRC − RSC) − k4SC

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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Fig. 5 Output from deterministic analysis of model at 300 K. Initial state 2: x = 1 × 10−6M, R = S =
0.5M, C = 1.0M (constant) Input: Reactions #1–#9; Kinetic parameters: Table 1; Kintecus switches:
-ig:mass; starting integration time and maximum integration time, 1 × 10−2 s; accuracy, 1 × 10−13

Note, here we consider the case for constant C, but it turns out that the results of the
analysis also apply when C is not held constant (C = C(t)).

Since f1+· · ·+f6 = 0, it follows that the sum of the time dependent concentrations,
i.e. F = R + S + RC + SC + X + XC, is itself constant and equal to the sum of the
initial concentrations of all chemical species involved (except C). Note that for the
present system, the initial conditions are chosen such that F = 1. When the system is
in its quasi-equilibrium state, we have R = S and RC = SC. Thus, it is convenient
to define—and work with—variables x± = R ± S and y± = RC ± SC so that the
equations dR/dt = f3 and dS/dt = f4 are combined to yield:

dx+/dt = g3 = − (k2 + k3) x+y+/2 + (k3 − k2) x−y−/2 + k4y+
dx−/dt = g4 = − (k2 + k3) x−y+/2 + (k3 − k2) x+y−/2 + k4y−

}

(2)

and f5 and f6 are similarly combined to give

dy+/dt = g5 = 2k1Xc − k4y+
dy−/dt = g6 = k3

(
x−y+ − x+y−

) − k4y−

}

(3)
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In terms of the new variables, the quasi-equilibrium state now becomes:

Z = (
X, Xc, x+, x−, y+, y−

) ∼ (X, XC, 2R, 0, 2RC, 0) .

To obtain the criteria for which the state loses stability, we use the method of Lyapunov
[26]. First, we perturb the governing equations about the state Z, viz:

dδZi/dt =
∑

j
(∂gi(Z)/∂Zj)δZj = λδZi (4)

(Note: g1 = f1 and g2 = f2) in which λ is the Lyapunov exponent. Determination of
the λ’s requires solution of the determinental equation:

det|∂gi(Z)/∂Zj) − λδij| = 0 (5)

in which δij = 1 for i = j and 0 for i �= j. That is λ is subtracted from each diagonal
term in the determinant, which, for the system in question, is the determinant of a
6 × 6 matrix, resulting in a polynomial of order 6 in λ. For stability of the state, Z, we
require all λ’s to be ≤0 (and any complex λ’s should have real part ≤0.) Some algebra
results in the following two requirements for stability:

RC [k4 (k2 − k3) + 4k2k3R] > 0, (6)

RC [(2k1 + k4) C + 2k4] + 2k1 [k4/ (k2 + k3) − R] C > 0 (7)

in which R = S and RC = SC are the values at the quasi-equilibrium state.
Numerical analysis of the governing equations, reaction #1–#9, indicates that for

k4/(k2 + k3) > F/2, the quasi-equilibrium state is characterized by R = S = F/2 and
Rc ∼ 0. Thus, condition (7) is automatically satisfied and because RC ∼ 0, the
condition (6) is rendered moot, i.e. the quasi-equilibrium state is stable regardless of
the value of k2/k3.

For k4/(k2 + k3) < F/2, numerical analysis shows that at the quasi-equilibrium
state R = S = k4/(k2 + k3) so that condition (7) is again automatically satisfied.
However, in this case, it is found that Rc and Sc are no longer small in the quasi-
equilibrium state, so that [k4 (k2 − k3) + 4k2k3R] > 0 also needs to be satisfied, viz:
k4(k3 − k2) < 4k2k3R = 4k2k3k4/(k2 + k3), or equivalently

(k2/k3)
2 + 4 (k2/k3) − 1 > 0, (8)

that is (k2/k3) >
√

5 − 2 = 0.236.
In summary, for k4/(k2 + k3) > F/2, the quasi-equilibrium state turns out to be

stable regardless of the k2/k3 ratio: there is no chiral symmetry breaking, but rather the
steady state consists of R = S = F/2 = 1/2. However, for k4/(k2 + k3) < F/2, we have
the two sub-cases, namely (1) k2/k3 >

√
5 − 2 = 0.236 for which the state is stable

(no chiral symmetry breaking), with R = S = k4/(k2 + k3) and (2) k2/k3 < 0.236
for which the quasi-equilibrium state bifurcates, that is we have chiral symmetry
breaking, to yield a steady state with R �= S. In this case, the degree of symmetry
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breaking (dominance of one enantiomer over the other) depends on the ratio k2/k3:
the smaller the ratio the greater the breaking, the greater the value of the enantiomeric
excess, ee = |(R − S)|/(R + S). For the present system, the threshold temperature
corresponding to k2/k3 = √

5 − 2 is 417 K, temperatures above which the system is
kinetically stable and will not exhibit symmetry breaking.

In addition to the above stability analysis, from which we were able to predict
the steady state value of R = S in the region of parameter space corresponding to
k2/k3 > 0.236 (no chiral symmetry breaking), the governing equations also enable us
to investigate the variation with temperature of the steady state concentrations where
one enantiomer is in excess for k2/k3 < 0.236. Combining the dx+/dt and dx−/dt,
Eq. (2), we obtain a differential equation for ee = x−/x+ viz:

dee/dt = (k3/2) (1 − k2/k3) (1 − ee2)y− + k4
(
x+y− − x−y+

)
/x2+. (9)

This, together with the equation for dy−/dt (Eq. (3)), yields in the steady state the
relation.

1 − ee2 = 2 (k4/k3)
2 /

[
(1 − k2/k3) x2+

]
(10)

Manipulation of the dx+/dt and dy−/dt equations also yields, in the steady state, the
relation
{[

1/2 (1 + k2/k3) x+ − k4/k3
]
(x+ + k4/k3) − 1/2 (1 − k2/k3) x2+ee2

}
y+ = 0.

(11)

For y+ �= 0, combining Eqs. (10) and (11) yields separate relations for x+ and ee, viz

x+ = 1/2 (k4/k3) (1 − k2/k3) / (k2/k3) (12)

and

1 − ee2 = 8 (k2/k3)
2 / (1 − k2/k3)

3 , (13)

from which R and S follow immediately, using (R,S) = (x+/2)(1 ± ee).
Furthermore, solving Eq. (13) for ee = 0 yields the aforementioned result k2/k3 =√

5 − 2, as expected.
The above analysis of the model is consistent with the results from the simulation

summarized in Figures 2, 3, 4 and Table 2, using the parameters in Table 1: The
threshold k2/k3 = √

5 − 2 occurs at T ∼ 417 K. Thus, for T > 417 K, there is no
chiral symmetry breaking; rather R = S = k4/(k2 + k3). Conversely, for T < 417 K,
there occurs chiral symmetry breaking with x+ = R + S and ee both increasing as T
decreases, per the predictions of Eqs. (12) and (13). However, below the temperature
corresponding to x+ = 1 (Eq. (12)), the condition y+ > 0 that led to Eqs. (12) and
(13) ceases to be valid: we enter a region (not shown in the Table 2 but verified in
simulations elsewhere in parameter space) in which X, Xc, Rc and Sc became ∼0 and
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R + S = 1, i.e. the concentration of X was limiting. However, we find that using x+ = 1
in Eq. (10) continues to yield values of ee that are remarkably close to those obtained
numerically. Thus, we can now claim with confidence the ability to predict the steady
state values of R and S at ALL temperatures directly from the system’s governing
equations.

3.3 Further exploration of phase space.

The parameters of Table 1, used in the aforementioned simulation, were chosen some-
what arbitrarily. To more completely understand the kinetic behavior of the model,
we investigate here the possibility of constraining the space of Ea’s. To that end, we
first note that the Arrhenius coefficient A and the energy Ea0 = Ea1, used to specify
the reaction constants ko = k1, can, at some arbitrary temperature, be used to set
the time scale; the value of k1 is not critical to either the quasi-equilibrium state or
the asymptotic steady state of the system. Arbitrarily fixing Ea2 (yielding k2), sup-
pose we now specify/constrain the temperature T = T1 at which the chiral symmetry
breaking threshold k2/k3 = √

5 − 2 occurs; then the energy level Ea3 follows, viz:
Ea3 = Ea2 +RT1ln(

√
5−2). Likewise, suppose we also specify/constrain the temper-

ature T2 corresponding to the R = S = F/2 = 1/2 threshold k4/(k2 + k3) = F/2 = 1/2;
then, using (k4/k3)/(1 + k2/k3) = (k4/

√
(k2k3))/(

√
(k2/k3) + √

(k3/k2)), and sub-
stituting (Ea3 − Ea2)/R = T1ln(

√
5 − 2), Ea4 follows from Ea4 = (Ea2 + Ea3)/2 −

RT2ln{cosh[(T1/(2T2)) ln (
√

5−2)]}. For example, starting with Ea2 = 15, imposing
T1 = 400 K leads to Ea3 = 10.2, and T2 = 600 K then leads to Ea4 = 12.04. Alterna-
tively, imposing T1 = 300 and T2 = 400, leads to Ea3 = 11.4 and then Ea4 = 12.74.
Curiously, one could choose T1 = T2, for which the system would just miss out on the
region of parameter space corresponding to the steady state ee = 0 and R = S < F/2.
In this scenario, for T < T1 the ee and x+ = R + S would increase with decreasing
temperature, with R + S = constant = F below a sufficiently low temperature; and, for
T > T1 the steady state would be R = S = F/2 independent of temperature.

That is—notwithstanding the arbitrariness in the choice of A and Ea1 (to determine
the time scale t)—by imposing values for the threshold temperatures T1 and T2, the
number of “degrees of freedom” in parameter space can be effectively reduced to one,
namely the choice of Ea2.

4 Conclusions

Systems chemistry is an important new discipline that investigates the behavior of
interacting chemical reactions [39,40]. Like systems biology and systems engineering,
a critical feature of systems chemistry is that unexpected outcomes may arise which
may not be predicted from examining the behavior of the individual components of
the system. We have studied, both computationally and analytically, several simple
chemical systems and have found that complex behavior can arise over time from even
simple systems [41–43]. Recently we and others have focused on chemical systems
to understand the generation of homochirality in prebiotic environments.
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We demonstrate chiral symmetry breaking in a simple chemical model system in
which the dynamic behavior is non-linear and explore the conditions under which small
perturbations in symmetry are amplified to near homochirality. While the governing
differential equations, being non-linear, are difficult to solve analytically, we have
been able to analytically investigate both quasi-equilibrium and steady state behav-
ior, and to thereby predict the conditions under which symmetry breaking results in
such enantiomeric enhancement. Such analytical predictions agree with all results of
numerical simulation—both deterministic and stochastic—of the chemical system.

The chemical system was designed to treat R and S (as well as RC and SC) sym-
metrically. Conditions were found that resulted, after a meta-stable equilibrium state,
in a random but exceeding small numerical perturbation of the state; that perturbation
was then amplified to a new steady state in which there was an enantiomeric excess.
Others have simulated spontaneous breaking in perfectly autocatalytic symmetrical
model systems due to fluctuations or reaction “noise” [10–13,44,45]; these Frank-like
systems depended on autocatalytic and mutual inhibitory reactions. Non-linear kinetic
behavior is a feature of all these systems.

How might models of chiral symmetry breaking reflect “real” chemistry? A per-
turbation (or so-called “butterfly effect” [38])—introduced in a computational model
either explicitly as an initial bias or implicitly due to a numerical perturbation in the
computation algorithm or introduced in the natural environment by external sources,
for example from constituents of meteorites [29,46,47]—initiates chiral symmetry
breaking; the non-linear system dynamics then cause amplification of one enantiomeric
form over the other [8–11,16,44,45]. It is important to note that spontaneous chiral
symmetry breaking may not require a chiral environment. For example, Soai and col-
leagues have shown absolute asymmetric synthesis and enantiomer enrichment using
achiral silica gel [48,49]. Our model suggests that symmetry breaking may occur in
simple chemical systems where there is interaction between an achiral monomeric
species, such as a prochiral precursor to an amino acid, and an achiral surface.

Our model gives further support to the notion that generation of a key molecule
in a predominately chiral form could act as a template for other important structures
and thereby provide an environment that would promote synthesis of chiral precursors
leading to functioning macromolecules.
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